DOCKER CHEAT SHEET

Create Dockerfiles

To build Docker images, you first need a Dockerfile. A Dockerfile is a
text file named Dockerfile and has no file extension.

FROM <baseimage> # get them from https://hub.docker.com

set the working directory inside the image
WORKDIR /app

copy the source code from the host machine

(this is your server or your development machine)

to the image

the dot (.) stands for the current working directory
COPY .

run any shell command inside the image
RUN <command>

this instruction does nothing
it is a documentation
EXPOSE 80

this command gets executed when the container starts
CMD <command> # e.g., ["node”, “server.js"]

Each line in a docker file is a new layer. Each layer is cached. When one
layer changes, all the layers underneath are rebuilt as well. All the
layers before are used from the cache at build time if they exist.

Create Multistage Dockerfiles

Multistage Dockerfiles are used to optimize Dockerfiles. One use case

is to create a build and a serve stage with separate base images. This
strategy can be used to make the final Image smaller and have a lower
attack because it has less system libraries. Each stage starts with FROM.

with as, you can give the current stage a variable name
FROM <baseimage> as builder

now do something
e.g., install dependencies,
build your source code

the second stage could use a smaller image

small images are based on alpine, or you can build

FROM scratch, if they do not need any system libraries
FROM scratch as serve

you can now copy files from the builder stage
e.g., the binary file that you build in that stage

COPY --from=builder ./hello-world ./hello-woxrld

CMD ["./hello-world”]

Create Docker Images

use this command in the directory where your

i# Dockerfile is located. The dot (.) tells to build
the image in the current working directory

$ docker build .

you can name your images. Typically, <name>:<tag> where
name is separated into <username>/<repository>:<version>
$ docker build --tag user/repo:0.1.0 .

list all images
$ docker image 1s

https://devopscycle.com

Create Docker Containers

i

docker containers are running images
docker run <image-name>

you can run public images from Docker Hub
or images from a private registry
docker run https://privateregistry.com/<image-name>

containers are started in the foreground. As soon as
you kill the process e.g., the terminal, it will stop
the container

to run a container in the background, you need to run
it in detached mode

docker run --detached <image-name>

list all containers

docker container 1ls

or shorthand syntax

docker ps

list all containers, including stopped ones
docker container 1ls --all

stop a container

docker stop <container-id>

remove a container

only stopped containers can be removed
docker stop <container-id>

start a stopped container

docker start <container-id>

restart a running container

docker restart <container-id>

automatically remove a container when it is stopped
docker run --rm <image-name>

Access Docker Containers

publish ports, e.g., forward container port to
a port on the host system
docker run --publish <host-port>:<container-port> <image>

execute shell command in a container
docker exec --interactive --tty <container-id> <command>

open an interactive shell (like connecting to a server)
docker exec --interactive --tty <container-id> sh

exit the container
exit

Create Docker Volumes

To persist data from docker containers between container starts you
need volumes. When a container is removed all data from the
container will be lost if you do not use volumes.

#
$

i

using a named volume (docker handles location on host)
docker run --volume <volume-name>:/path/in/container
<image-name>

using a mounted volume (you handle location on host)
docker run --volume /path/on/host:/path/in/container
<image-name>

list all volumes incl. metadata
docker volume 1ls

Blog: https://devopscycle.com/blog/the-ultimate-docker-cheat-sheet

GitHub: https://github.com/aichbauer/the-ultimate-docker-cheat-sheet
Consulting: https://devopscycle.com/

.//devopscycle.com

