DOCKER COMPOSE
CHEAT SHEET

Create A docker-compose.yaml

To manage multiple containers with Docker Compose, you need a YAML
file. This file is named docker-compose.yaml. A docker-compose.yaml file

consists of a version, services, volumes, networks, configs, and secrets.

Services From Images

We can also use images from Docker Hub or a private registry. We can
publish ports, set environment variables, join networks, create health
checks, and persist data in volumes.

string that represents the
version: '3’

an object where each key represents a new service
e.g., your client application, web server, database,
services:
client:
define your client
e.g., image, ports, env vars, networks, volumes,
server:
define your server
e.g., image, ports, env vars, networks, volumes,
database:
define your database
e.g., image, ports, env vars, networks, volumes,

an object where each key represents a new volume
e.g., to persist the database, store images, documents,
volumes need to be explicitly bound to a service
volumes:
database_volume:
define the settings of your volume
if you leave this empty, defaults will be applied

an object where each key represents a network
e.g., to communicate with containers in the same network
networks need to be explicitly bound to a service
networks:
docker creates a default network for all services
in a docker-compose file, every service joins the
default network and can contact every other container
by its name e.g., docker sets up a DNS entry in server
for the client and database
so a call from the server container to
<protocol>://database:<port>
is equivalent to
<protocol>://<IP-address-of-database>:<port>
we can also define explicit networks
and let only some containers join
e.g., database and server
server_database_network:
i# define the settings of your network
if you leave this empty, defaults will be applied

an object where each key represents a config
e.g., to adapt behavior without rebuilding an image
configs need to be explicitly bound to a service
configs:

some_config:

an object where each key represents a secret
e.g., to adapt behavior without rebuilding an image
secrets act like configs but with a specific focus
on sensitive information
secrets need to be explicitly bound to a service
secrets:

some_secret:

services:
database: # we are defining a service called database
if the image is available locally, it will be used
otherwise, docker will pull the image from Docker Hub
use private images by adding the registry URL
https://myprivateregistry.com/<image>:<version>
i postgres:16.1
ports:
publish ports to access the database from outside
<host-port>:<container-port>
- 5432:5432
environment:
set environment variables
VARIABLE_NAME: variable_value
restart the container if it fails
restart: always

healthcheck:
the command to check if the container is healthy
test: ["CMD", "pg_ready", "-U", "postgres"]

interval: 30s
timeout: 10s
retries: 3
start_period: 30s

Volumes And Networks

We can persist data throughout container starts in volumes (e.g., the
data from our database). Networks are used to easily communicate
between containers in a docker-compose.yaml.

services:
database:
... other configuration ...
volumes need to be explicitly bound to a service
mounted volumes: <host-path>:<container-path>
named volumes: <volume-name>:<container-path>
volumes:
- postgres_data_volume:/var/lib/postgresql/data
networks need to be explicitly bound to a service
networks:
- server_database_network # <network-name>
volumes:
postgres_data_volume: # use explicitly in service
networks:
server_database_network: # use explicitly in service

Start, Stop, Remove, And Access

Services From Dockerfiles

Services are the core of Docker Compose. They define the containers
and how to manage them. We can use Dockerfiles in Docker Compose.

services:
server: # we are defining a service called server
build: # we use this command to create the image
the dot (.) represents the current working directory

context: .
dockerfile: Dockerfile # the path to the file
... other configuration .

start all services in a docker-compose.yaml at once

$ docker compose up # add --detach to run in background
i stop one service

$ docker compose stop <service-name> # e.g., database

restart stopped service (use start for removed services)
$ docker compose restart <service-name>

remove a stopped service

$ docker compose rm <service-name>

i# stop and remove all services

$ docker compose down

rebuild all services

$ docker compose build

create an ssh-like connection into a container

$ docker compose exec -it <service-name> <command>

get the logs from all services

$ docker compose logs # extendable with <service-name>

Blog: https://devopscycle.com/blog/the-ultimate-docker-compose-
cheat-sheet/

GitHub: https://github.com/aichbauer/the-ultimate-docker-compose-
cheat-sheet/

Consulting: https://devopscycle.com/

https://devopscycle.com/
https://devopscycle.com/blog/the-ultimate-docker-compose-cheat-sheet/
https://devopscycle.com/blog/the-ultimate-docker-compose-cheat-sheet/
https://github.com/aichbauer/the-ultimate-docker-compose-cheat-sheet/
https://github.com/aichbauer/the-ultimate-docker-compose-cheat-sheet/
https://devopscycle.com/
https://devopscycle.com/team/
https://devopscycle.com/

